EXPANDORAM II\| OPERATIONS MANUAL

EXPANDORAM III

OPERATIONS MANUAL

SD \#7140107
REVISION C
JUNE 8, 1983

Subsection	Title	Page
Number		

SECTION I
PHYSICAL DESCRIPTION AND CHARACTERISTICS

1.1	INTRODUCTION	$1-1$
1.2	GENERAL DESCRIPTION	

SECTION II
THEORY OF OPERATION
2.1 INTRODUCTION 2-1
2.2
2.2 .1
2.2.2
2.2 . 3

GENERAL DESCRIPTION 1-1
2.2.4

FUNCTIONAL DESCRIPTION
2-1
MEMORY ARRAY 2-1
MEMORY DECODE AND CONTROL 2-1
ADDRESS MULTIPLEXER 2-1
DATA BUFFERS 2-1
2.2.5 PORT ADDRESS DECODE 2-3
2.2.6 PAGE SELECT 2-3
2.3 CIRCUIT ANAL,YSIS 2-3
2.3.1
2.3.2

PORT DECODE $2-3$
2.3 .3
2.3.4
2.3 .5
2.3 .6
2.3 . 7

PHANTOM
2-4
2.4

REFRESH
2-4
READ $2-5$
WRITE 2-6
WAIT STATES 2-6
2.4 .1

POWER 2-7
2.4.2

MEMORY UTILIZATION
2-7
PROGRAMMABLE READ ONLY MEMORY
2-7
2.4 .3
2.4.3.1
2.4.3.2
2.4.3.3
2.4.3.4
2.4.3.5

SWITCH SETTINGS AND STRAPPING
2-8
EXPANDORAM III IN NON-SDSYSTEMS
ENVIRONMENTS
2-11
JUMPER PADS E22, E23, AND E24 2-11
JUMPER PADS E25, E26, AND E27 2-11
JUMPERS El6, El7, AND El8 2-11
JUMPERS E19, E20, AND E21 2-11
JUMPERS E6, E7, AND E8 2-12
APPENDICES

A	SAMPLE MEMORY DI AGNOSTIC SOFTWARE LISTING	A-I
B	TIMING DIAGRAM	B-I
C	ASSEMBLY DRAWING	C-I
D	SCHEMATIC	D-1
E	PARJ'S LIST FOR EXPANDORAM III	E-1

ILLUSTRATIONS

FIGURE		PAGE
No.	Title	No.
1-1	EXPANDORAM III BOARD	1-2.
2-1	EXPANDORAM III BLOCK DIAGRAM	2-2
2-2	PROM PROGRAM AND PAGE MAPPING (Page l)	2-9
2-2	PROM PROGRAM AND PAGE MAPPING (Page 2)	2-10
2-3	EXPANDORAM III S3 SWITCH SETTINGS	2-10
TABLES		
Table		Page
No.	Title	No.
1-1	EXPANDORAM III SPECIFICATIONS	1-3
1-2	EXPANDORAM III CONNECTOR JI PIN OUT FOR	
	$32 \mathrm{~K} / 64 \mathrm{~K}$	1-4
2-1	EXPANDORAM III BOARD PARTS AND DESCRIPTION	2-3

SECTION I
 PHYSICAL DESCRIPTION AND CHARACTERISTICS

1.1 INTRODUCTION

This section provides the purpose, capabilities and limitations of the EXPANDORAM III board.

1. 2 GENERAL DESCRIPTION

The EXPANDORAM III board provides a low cost means for expanding Random Access Memory (RAM) capability for computers utilizing the $S-100$ bus structure. It can. use the Z-80 refresh signal and operates at 4 mHz . The latest version (EXPANDORAM III/696) is compatible with S-l00 systems complying with the IEEE-696 S-IOO specification.

The EXPANDORAM III board is a high performance Dynamic RAM board and uses MOS dynamic memory devices. It may be configured to have a memory capacity of 64 K , 128 K , 192 K or 256 K bytes of memory using the MK $4164(65,536 \times 1$ MOS Dynamic RAM) .

Additional features:

* EXPANDORAM III/696 version compatible with IEEE-696 S100 systems.
* Phantom output disable or manual switch selectable output disable.
* Typical power dissipation of 5 watts.
* 4 mHz operation.
* Port addressable board select for multi-user system.

The EXPANDORAM III board is implemented on a single 5.25" x 10.0" x 0.65" Printed Circuit Board. It requires a DC voltage at a level of +7 V to +10 V . The EXPANDORAM III board is typically interfaced to an sDSystems computer system by connector J-l. Table l-l examines the overall specifications for the EXPANDORAM III board. Table l-2 provides the signal name, direction and description of each connector Jl pin used for EXPANDORAM III.

1.1 INTRODUCTION

This section provides the purpose, capabilities and limitations of the EXPANDORAM III board.

1.2 GENERAL DESCRIPTION

The EXPANDORAM III board provides a low cost means for expanding Random Access Memory (RAM) capability for computers utilizing the $S-100$ bus structure. It can use the $Z-80$ refresh signal and operates at 4 mHz . The latest version (EXPANDORAM III/696) is compatible with $S-100$ systems complying with the IEEE-696 S-100 specification.

The EXPANDORAM III board is a high performance Dynamic RAM board and uses MOS dynamic memory devices. I.t may be configured to have a memory capacity of $64 \mathrm{~K}, 128 \mathrm{~K}, 192 \mathrm{~K}$ or 256K bytes of memory using the MK 4164 ($65,536 x l$ MOS Dynamic RAM) .

Additional features:

* EXPANDORAM III/696 version compatible with IEEE-696 S100 systems.
* Phantom output disable or manual switch selectable output disable.
* Typical power dissipation of 5 watts.
* 4 mHz operation.
* Port addressable board select for multi-user system.

The EXPANDORAM III board is implemented on a single 5.25" x 10.0" x $0.65^{\prime \prime}$ Printed Circuit Board. It requires a DC voltage at a level of +7 V to +lOV. The EXPANDORAM III board is typically interfaced to an SDSystems computer system by connector J-l. Table l-l examines the overall specifications for the EXPANDORAM III board. Table l-2 provides the signal name, direction and description of each connector Jl pin used for EXPANDORAM III.

Figure 1-1. EXPANDORAM III BOARD

Table 1-1. EXPANDORAM III SPECIFICATIONS

TOPIC	DATA
Memory Capacity	262.144 bytes
Memory Access	200 ns max.
Memory Cycle	$375 \mathrm{~ns} \mathrm{min}$.
Interface Levels	TTL Compatible
Power (2 us memory cycle)	+7V to +10V @ 400 mA (max)
Physical Dimensions	5.25 " x 10.0" x .65"
Operating Temperature	0 degree C to 50 degree C

Table 1-2. EXPANDORAM III CONNECTOR JI PIN OUT FOR $32 \mathrm{~K} / 64 \mathrm{~K}$

PIN \#	SIGNAL NAME	DIRECTION	DESCRIPTION
1,51	+8 V to 10 V		Power
24	øl (XRAMIII/696)	Input	Phase 1 clock
25	Øl (XRAMIII only)	Input	Phase 1 clock
27	RFU (pWAIT) 1	Input	Wait
$\begin{aligned} & 79,80,81, \\ & 31,30,29, \end{aligned}$			
82,83	AO-A7	Input	Adaress bus bits 0-7
$\begin{aligned} & 84,34,37, \\ & 87,33,85, \end{aligned}$			
86,32,	A8-Al5	Input	Aćdress bus bits 8-15
$\begin{aligned} & 36,35,88, \\ & 89,38,39, \end{aligned}$			
40,90	DO-0 to DO-7	Input:	Data bus in
$95,94,41,$$42,91,92,$			
93,43	DI-0 to DI-7	Output	Data bus out
44	sMl	Input	Machine cycle one
47	SMEMP.	Input	Memory read.
66	NDEF (RFSH) 1	Input	Refresh (z80 CPU Carà)
63	MWRT	Irput	Memory write
72	RDY	Output	Ready
78	PDBIN	Input	Data bus in
100,50	GROUND		
45	sOUT	Input	Port Output
99	POC*	Input	Power on Clear
67	PHANTOM*	Input	Phantom Disable

2.1 INTRODUCTION

This section provides a detailed analysis of the EXPANDORAM III board. It contains:

FUNCTIONAL DESCRIPTION
BOARD PARTS AND DESCRIPTION (Table 2-1)
CIRCUIT ANALYSIS
MEMORY UTILIZATION

2.2 FUNCTIONAL DESCRIPTION

The major functions of the EXPANDORAM III board are shown in figure 2-l. The following functions make up the memory interface: Memory array, memory decode and control, address multiplexer, data buffer, port address decode, and page select.

2.2.1 Memory Array

The memory array consists of up to 32 (16K) dynamic random access memory elements. Each element has a l6,384xl bit capacity (l6K). The 32 (l6K) RAMs are organized into four banks of eight RAMs each. The eight RAMs each contribute one bit to an addressable location. The total storage capacity of the EXPANDORAM III is 65,536 .

2.2.2 Memory Decode And Control

The memory decode and control circuitry is responsible for generating the timing signals for the memory array, address multiplexer, and data buffer. Timing within the memory decode and control circuitry is generated by a TTL compatible delay line. A PROM is used to select the proper banks according to the address lines, board select switches, and the board select latch. (See Subsection 2.4.1 for more details on PROMs).
2.2.3 Address Multiplexer

The address multiplexer is responsible for taking the address bits from the address bus buffers and multiplexing the proper row and column address into the memory array under control of the memory decode and control circuitry.

2.2.4 Data Buffers

The data buffers isolate the memory array from the data bus controlled by the memory decode and control section.

Figure 2-1. EXPANDORAM III BLOCK DIAGRAM

The port address decodes port $F F$ and latches the page select data.
2.2.6 Page Select

Page select is performed by a page number latch and decoded by the on-board PROM.

2.3 CIRCUIT ANALYSIS (Reference Schematic Appendix)

Table 2-l provides a functional description of major EXPANDORAM III board parts. The circuit analysis references parts by designator and is organized as follows: Port decode, phantom, refresh, read, write, wait states, and power.

Table 2-1. EXPANDORAM III BOARD PARTS AND DESCRIPTION

LOCATION
DESCRI PTION
U21 Flip Flop Wait State
Ul3 Port Input Latch
Ul9 Port FF Decoder
U8, S3 Board Address Decode Logic (Determine which
bank and board are enabled)
U5,Ul Bank Enable Select
U2 Column Address Select (Delay Line)
Ul 6
U9,U14
U23
U2 4
U25
U20
4×8 chips
per bank
VRI

On-Eoard Refresh Counter
Refresh Address Buffer
Lower Address Buffer
Upper Address Buffer
Data Input Buffer
Data Output Buffer
RAM Matrix
Power Supply Regulators

2.3.1 Port Decode

The lower address buffer (U23) is monitored by a NAND gate (Ul9). When an address $F F$ (Hex) is present on the lower address lines, the output of ul 9 becomes true (logic level low) and signal FF* is inverted by U22 pin 8. When Pin 1 of U7 is high (refresh not occurring or memory cycle not occurring), the output of Ulo pin 11 conditions $U 7$ pin ll to monitor the input signal sOUT. sOUT is generated by the system Central Processing Unit (CPU) to indicate a data transier bus cycle to an output device such as the EXPANDORAM III board. When the CPU has sent sOUT and address FF (Hex) to the EXPANDORAM III board, U7 pin 13 becomes true (logic level
high), latching the data on the BDOX bus onto the outputs of Ul3. The CPU will have placed the required data pattern on the system DOX bus. Because the data input buffer (U25) is always enabled, whatever data is on the system DOX bus will also appear on the BDOX bus.

The output data pattern latched in $U 13$ provides part of the addressing (A2-A5) required by the bipolar PROM (U8) which outputs the correct RAM bank enable data pattern from programmed PROM memory. PROM address bits A0 and Al are provided from system address bits Al4 and Al5 which are buffered and inverted by Ul8 pins 2 and l2. PROM address bits A6-A8 are derived from switches (S3) which are user selectable. Subsection 2.4 provides more information on switch settings and software partition of system memory.

A successful port decode outputs a RAM bank enable data pattern from the PROM (U8) through the bank enable switches (S3) to the row address strobe circuitry (U5 and Ul). Any RAM bank enable line that becomes true (logic level low) from the PROM will also generate a true condition at U4 pin 8. This signal will allow data from the RAM matrix to be latched on the outputs of the data output buffer (U20) during a read process.

2.3.2 Phantom

The phantom signal from the CPU is used to disable all data output from the EXPANDORAM III by causing pin lo of U3 to be a logic low. The output of U 3 pin 8 staying high turns of the tri-state data output buffer (U20). The EXPANDORAM III is provided with a jumper which connects E9 to ElO. Removal of the jumper disallows use of phantom by the CPU for turning off the individual EXPANDORAM III board.
2.3.3 Refresh

Refresh is required by Dynamic RAM memory devices to maintain valid data stored in an internal memory cell. The EXPANDORAM III is designed to generate refresh cycles from internal timing circuitry or from an external command from the system CPU.

An external refresh command NDEF (RFSH*) (pin 66) is inverted by Ul2 and inverted again by U7. When the output of $U 7$ pin 10 goes low, the transition of a falling edge triggers the one shot (U58) causing a negative going pulse to be output to pin 4 of the flip-flop U6. The output of 46 pin 5 becomeshigh, conditioning the NAND gate Ul to allow RAM bank enable to become true for all RAS* signals to the RAMmatrix. U7 pin 10 going low also goes to 45 , placing a logic level high on the inputs of NAND gate Ul, causing the RAS* signals to occur.

At the same time, the 07 pin 10 low signal is inverted by Ull pin 9 which inhibits port decode operations from occurring at U7 pin 3 and conditions the binary counter (U9 pin 1) to increment after refresh is completed. The $u 7$ pin 10 low signal also inhibits CAS* from occurring at Ulo pin 1 and turns off the upper address buffer (U24) at UlO pin 9. The U7 pin 10 low signal also turns off the lower address buffer (U23) at Ul7 pin l and turns on the refresh counter address buffer (Ul4). The refresh counter contents are gated onto the RAM address lines and a RAS* only refresh cycle is performed.

If the system, in which the EXPANDORAM III is installed, is inactive, an internal decade counter (Ul6) will count system clock cycles ($\varnothing 1$, pin 24) buffered at U 22 pin 10 . The counter (Ul6) is loaded by a logic level low at pin 9, generated by any previous read, write, or refresh operation. After 10 system clock cyclesp a logic level high is input to Ul7 pin 10 and the next clock cycle on Ul7 pin 9 places a logic leves low on pin 10 of flip-flop U6. The flip-flop U6 will set, placing a logic level high on pin 8 of $\mathbf{U} 7$. This places a logic level low on U7 pin lo which performs a refresh identical to the external refresh previously described.

When pin 5 of flip-flop U6 is set during the refresh cycle, a logic level high is placed on pin 1 of the delay line (U2). One hundred nanoseconds later, on rin 4 of the delay line, a logic level high on pin 3 of Ul 4 is inverted, conditioning the clock input pin ll of flip-flop U6. After an additional 150 nanoseconds, pin 2 of the delay line goes high, which clears flip-flop U6 on pin 1 from NAND gate Ul0 pin 6. Pin 5 of flip-flop U6 goes low and, 100 nanoseconds later, pin 4 of the delay line (U2) goes low, clocking pin ll of filp-flop U6 which places a logic level low on pin 9 of U6.

2.3.4 Read

A read process uses many of the same circuits previously described in Subsection 2.3.3, Refresh. After the CPU has stabilized a valid memory address on the address bus, a memory read command sMEMR (pin 47) is inverted and placed on pin 2 of U3. The logic level high from U3 pin 12 clocks a logic level high onto pin 5 of flip-flop U6. The delay line (U2) is sequenced with a high signal appearing on pin 12 in 50 nanoseconds, on pin 4 in 100 nanoseconds, and on pin 2 in 250 nanoseconds.

At the time that flip-flop $U 6$ pin 5 goes high, pin 10 of $U 7$ is also high, since a refresh is not being serviced. Pin lo of U7 being high conditions pin l of Ul7 to output a logic level low on pin 3 to enable the lower address buffer (U23). Pin 5 of flip-flop U6 also conditions Ul NAND gates to allow the PROM data pattern to pass through, enabling one of the RAS* signal lines to one of the RAM banks. The row address strobe (RAS*) is implemented using the lower 8 bits of the system address bus.

Fifty nanoseconds later, pin 12 of $U 2$ goes high which gates a logic level low from Ul0 pin 8 and enables the upper address buffer (U24) and disables the lower address buffer (U23).

After another 50 nanoseconds, pin 4 of 42 goes high which generates a column address strobe (CAS*) at pin 3 of UlO. The CAS* is implemented using the enabled upper 8 bits of the system address bus. The 50 nanosecond delay allows the upper 8 bits of the address lines to stabilize before CAS* occurs.

When pin l2 of the delay line 02 went high, turning on the upper address buffer, the same enaable signal (UlO pin 8) also enabled the DIX data output buffer (U20). Since CAS* is still to be processed at this time, the data from the RAM matrix (pin l4) is unstable. The memory data is not latched until 250 nanoseconds later when UlO pin 6 goes low, resetting flipflop U6 pin 5, which causes pin 12 of the delay line to go low, latching the output data buffer with a logic level low on U20 pin ll.

The data in RAM memory is output from the output data latch (U20) when the CPU inputs a pDBIN command (pin 78) which is inverted and gates a logic level high from pin 4 of $u 7$ which enables a logic level low from pin 8 of U3 which turns on the output data buffer (U20) on pin 1.

2.3.5 Write

A write process is almost identical to a read process and uses most of the timing circuits employed by a read process. After the CPU has stabilized a valid memory address on the address bus and a valid data pattern of the DOX data bus, a memory write command, MWRT (pin 68) is inverted by Ul2 pin 12 and placed on pin 13 of U3. The logic level high from U3 pin l2 clocks a logic level high onto pin 5 of flip-flop U6. The RAS* and CAS* sequencing is then identical to a read cycle previously described except that the write command on pin 3 of all RAMs in the RAM matrix is held low by U3 pin 6. The data from the data input buffer (U25) is written into memory. Note that, since the data input buffer is always enabled (pins 1 and 19), the CPU has all responsibility for valid data being stabilized on the DOX data bus.

2.3.6 Wait States

When the EXPANDORAM III is used with higher speed CPU boards (4 mHz or greater), a jumper must be installed connecting El4 to El5. The jumper in place allows the CPU bus status signal sMl (pin 44) to initiate a wait state. The CPU will always make $S M 1$ high when the CPU is executing an OP CODE fetch instruction. A logic level high on pin 44 is inverted which places a logic level low on pin 8 of Ul2.

The logic level low is clocked through flip-flop $42 l$ pin 5 which enables ull pin 15 with a logic level low. A logic level low is output from Ull pin 13 to pin 72, RDY command. This output will cause the CPU to execute a wait state. The next clock cycle will pre-set flip-flop U2l with a logic level low from pin 9 which forces pin 5 high. Pin 5 at a logic level high will disable Ull pin 13 which returns the RDY command to a logic level high.

In systems configured with earlier SDSystems CPU boards (SBC200), when the RDr command is pulled low, an "ECHO" signal from the CPU is placed on pin 27 of the $S-100$ bus called pWAIT. This signal input on the EXPANDORAM III board prevents the on-board refresh counter (Ul6) from being accidentally halted by a POC* command occurring during a wait state. A pWAIT command disables NAND gate Ul7 pin 12.

2.3.7 Power

Power for logic is derived from an on-board regulator (VRI) and decoupled by a series of capacitors. The S-100 bus provides unregulated +8 VDC on pins 1 and 51 and ground reference on pins 50 and 100 .

2.4 MEMORY UTILIZATION

The EXPANDORAM III board has been integrated into computer systems which operate on the following software operating. systems:

```
CP/M
MP/M
COSMOS
OASIS
```

For the memory on the EXPANDORAM III to be utilized correctly, a Programmable Read Only Memory (PROM) (U8) is installed on each board with a SDSystems program written to optimize the memory partitioning required by the operating systems previously mentioned. Specific switch settings and strapping are also required to allow the EXPANDORAM III to function correctly.

2.4.1 Programmable Read Only Memory

The PROM shipped with the EXPANDORAM III board is designed for operating systems which utilize a 48 K memory partition per page. A page of memory is typically reserved for each user in an operating system memory allocation. A page number (0-9) is equivalent to a user number (0-9).

The PROM has 9 address lines (A0-A8) which are divided into three fields: S, P, and A (reference Figure 2-2). The S field address bits A6-A8 are developed from the S 3 switch settings which provide the board number and a PROM enable. The P field address bits A2-A5 are developed by the system CPU and latched into Ul3 during a port decode cycle. The P field is the page or user number. The A.field address bits AO-Al are provided by the system CPU on the two upper system address bits Al4Al5. The A field is the RAM bank number.

The PROM has 6 output data lines which are utilized in the EXPANDORAM III. Four output data bits are used to enable l of the 4 RAM banks in the matrix. The remaining 2 output data bits become address bits Al4-Al5 in the upper address buffer. Figure 2-2 depicts the page-bank-board map of a typical operating system using 1048 K pages on two EXPANDORAM III boards.

2.4.2 Switch Settings And Strapping

Switch settings information on S3 for the EXPANDORAM III is given in Figure 2-3. Factory setting is all switches ON.

Two straps are factory installed: E9-E10 and El4-El5. The straps are required for most SDSystems configurations and software. E9-El0 is used for phantom operation and El4-E15 is used to generate wait states during certain CPU operations.

CP/M, MP/M, COSMOS 48 BOUNDARY SELECTION
BANK

$S=1$
$A=2$
$P=9$
$A=2$
$A=1$
$A=0$

CASIS 48 BOUNDARY SELECTION
BANK

Figure 2-2. PROM PROGRAM AND PAGE MAPPING (Page 1)

		(BD)	A8		BANK SELECTED	PROM OUTPUT
		(NBR)	A7	0_{4}	3	7
			A6		3	7
		(USER)	A5	0_{3}	2	B
		(NBR)	A4			
			A3	0_{2}	1	D
	(15, Al 4)	Al	0_{1}	0	E

NOTE: P=B,C,D,E,F IS RESERVED.

Figure 2-2. PROM PROGRAM AND PAGE MAPPING (Page 2)

Figure 2-3. EXPANDORAM III S3 SWITCH SETTINGS

2.4.3 EXPANDORAM III In Non-SDSystems Environments

The EXPANDORAM III provides several "jumper" pads for altering the board to operate in a non-SDSystems environment. The board is manufactured with these jumpers connected by etch for operation with SDSystems CPU boards. These jumpers can be modified to operate with other CPU boards.

NOTE: These modifications probably will require modification of both on-board firmware and system software for correct operation.
2.4.3.1 Jumper Pads E22, E23, And E24

These jumpers provide for selection of the $S-100$ bus pin upon which system clock is received. The board is etched for reception of phase one ($\varnothing 1$) clock on pin 24 of the S-100 bus. This is an IEEE-696 signal. The jumper can be changed by cutting the etch between E24 and E23 and installing a jumper between E23 and E22. This can allow reception of the system clock on pin 25.

NOTE: This is not supported by IEEE-696. The IEEE-696 signal on pin 25 is pSTVAL.
2.4.3.2 Jumper Pads E25, E26, And E27

The jumper pads E25, E26, and E27 provide for selection between Power On Clear (POC) and RESET as the board reset signal. This allows the capability to reset the EXPANDORAM III by use of the RESET signal. Since RESET is asserted concurrently with POC, this will not affect power up reset.

NOTE: The IEEE-696 signal RESET is to reset bus masters; however, the EXPANDORAM III board is a permanent bus slave. The board is etched to use POC. To use RESET: Cut the etch between E26 and E25 and install a jumper between E26 and E27.
2.4.3.3 Jumpers El6, El7, Andell 8

The jumper pads El6, El7, and El 8 are initially configured such that address line Al4 is supplied by the page decode logic (PROM U8 - pin ll). This can be jumpered such that Al 4 is tied to $S-100$ bus address line A7. This can be accomplished by cutting the etch between El 8 and El7 and attaching a jumper between El7 and El6.

NOTE: This may require firmware modification.
2.4.3.4 Jumpers E19, E20, And E2l

The jumper pads E19, E20, and E2l allow the most significant bit of the page decode logic (PROM U8-pin l6) to be tied to Al3* (inverted $S-100$ bus address line Al3). The initial
configuration of these jumpers has this most significant bit of the page decode logic tied to latch Ul3 - pin 10 . The modification can be accomplished by cutting the etch between E19 and E20 and attaching a jumper between E2l and E20.

NOTE: This may require firmware alteration.
2.4.3.5 Jumpers E6, E7, And E8

The jumpers E6, E7, and E8 allow address bit A7 of the onboard RAM matrix to be tied to +5 V (high). This allows
selection from 64 K to 16 K address capability on the multiplexed RAM matrix address lines.

This can be accomplished by cutting the etch between E6 ande7 and attaching a jumper between E6 and E8.

APPENDIX A

SAMPLE MEMORY DIAGNOSTIC SOFTWARE LISTING

THIS PAGE INTENTIONALLY LEFT BLANK

A-2

ADDR	OBIECT	ST \# SORRCE STATEMENT			
		0001 : TRANSLATED FROM DEC 1976 INTERFACE MAGAZINE 0002 :			
		3 ; THIS IS A MODIFIED ADDRESS STORAGE TEST WITH			
		0004 :AN INCREIENTIMG PATTERN			
		0005 ;			
		$0006 ; 256$ PASSES NWST BE EXECUTED EEFORE THE NEMORY 0007 ; IS COMFLETELY TESTED			
		0008 ;			
		0009 ; IF AN ERROR OCCURS, THE PATTERN WILL BE STORED			
		0010 ;AT LOCATION '002C'H AND THE ADBress OF THE			
		0011 ; ERROR LOCATION HILL BE STORED AT '0020'H0012 ; AND 'OOZE'H.			
		0013 ;			
		0014 ; THE CONTENTS OF LOCATIONS '000C'H ANO '001D'H			
		0015 ; SHTULL be SELECTED ACCORDINS TO THE FOLLOWING			
		0016 ; MEMORY SIZE TESTED			
		0017 ;			
		0018 ; TOP OF MEMCRY TO			
		0019 ; BE TESTED			VALUE OF EPAGE
		0020 ;			
		0021 ;	4K		${ }^{\prime} 10^{\prime} \mathrm{H}$
		0022 ;	\%		${ }^{\prime} 20^{\prime} \mathrm{H}$
		0023 ;	6K		'40'H
		0024 ;	2K		'80'H
		0025 ;	K		' $\mathrm{CO}^{\prime} \mathrm{H}$
		0026 ;	4K		'FF'H
		0027 ;			
		0028 ; THE FROGRAM IS SET UP TO START TESTING AT			
		0029 ;LLEATION '002F'H. THE STARTING ADORESS FOR THE0030 ; TEST CAN BE MODIFIEI BY CHANGING LUCATIONS			
		0031 ; ${ }^{\prime} 0003^{\prime} \mathrm{H}^{\prime} 00004^{\prime} \mathrm{H}$ AND ${ }^{\prime} 0011^{\prime} \mathrm{H}{ }^{\prime} 0012^{\prime} \mathrm{H}$.			
		0032 :			
		0033 ; TEST TIME FOR A 16K BY \% MEMORY IS APPROX.			
		0034 ;			
		0035 ;	PSECT	ABS	
20000 000000		0036 ;	ORG	0000 H	
		0037 ;	LII	B,0	;CLEAK B PATRN MODIFIEF
		0038 ;LOAL UP MEMORY			
0002	212 F 00	0039 L09P:	LD	HL, START	;GET STARTING ADDR
0005	70	0040 FILL:	LI	A, L	;LCN BYTE TO ACCM
0006	AC.	0041	XOR	H	; XOR WITH HIGH BYTE
0007	AB	0042	XOR	B	; XOR WITH PATTERN
0008	77	0043	LD	(HL), A	: STORE IN ADDF
0009	23	0044	INC	H	; INCREMENT ADDR
000A	7C	0045	LD	A, H	¢LOAD HIGH BYTE OF ADBR
000B	FE10	0046	CF	EPAGE	;COMPARE WITH STOF ADDR
0000	C20500	0047	J	NZ, FILL	;NOT DONE, GO BACK
		0048 ; PEAD	AND CHEC	TEST LATA	
0010	212 FOO	0049	4	HL, START	;GET START ADDR
0013	75	0050 TEST;	LJ	A, L	;LGAD LOW EYTE
- 0014	Af:	0051	XOR	H	; XOR WITH HIGH BYTE
0015	AB	0052	XOR	8	; XOR WITH MODIFIER
0016	㫙	0053	CP	(HL)	;COMPARE WITH MEMORY LOC

0017	125000	(1) 54	H	NZ, EXIT	; ERROR EXIT
D01A	23	0055	In	HL	; UPDATE MEMORY ADDF
0018	76	0056	LD	A, H	;LQAD HIGH BYTE
001 C	FE10	0057	CF	EPAGE	:COMmare mith stop adok
OOLE	121300	0053	.JF'	NZ, TEST	:LOOP BACK
0021	04	005%	INE	B	; UPILATE MIDIFIER
0022	630200	0060	IP	LOOF'	;RST WITH NEW MOLIFIEF
		0061 ; ERRCH	EXIT		
002	222500	0062 EXIT	1.0	(BYTE),	; SAVE ERKOR ADIRESS
0028	322000	0063	LII	(PATRN)	A:SAVE EAI PATTEFN
002 B	76	0064	HALT		; FLAG OPERATOF
70020		0065 PATRN:	DEFS	1	
90020		0066 BYTE:	DEFS	2	
002 F	2500	0067 START:	DEFW	\$	
0031	3100	0068	IEFW	\$	APLATE FOR FIFIST ADER
20010		0069 EPALIE:	EQU	10 H	;SET UF FOF 4K TEST
		0070	END		

APPENDIX B

TIMING DIAGRAM

INSTRUCTION OP CODE FETCH

MEMORY READ OR WRITE CYCLES

4MHZ M1 REFRESH CYCLE

\& MHZ ONBOARD TIMEOU' REFRESH

2 MHZ Ml REFRESH CYCLE

ASSUME DELAyS ARE SUCH THAT A SECOND REFRESH CYClE CAN GET TRIGGERED @ 2 MHz

IN FACT, ANY TIME THE SIGNAL AT B IS SHORT ENOUGH TO RETRIGGER A SECOND REFRESH CYCLE THERE WILL BE ENOUGH TIME TO FINISH THE CYCLE.

APPENDIX C

ASSEMBLY DRAWING

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX D
SCHEMATIC

APPENDIX E

PARTS LIST FOR EXPANDORAM III

THIS PAGE INTENTIONALLY LEFT BLANK

E-2

$\begin{aligned} & \text { QTY } \\ & \text { REQD } \end{aligned}$	DESCRIPTION
1	EXPANDORAM III PC BOARD
4	IC, 74LS00
1	IC, 74LSO2
1	IC, 74LS10
3	IC, 74LS14
1	IC, 74 LS 20
1	IC, 74LS30
2	IC, 74 LS 74.
1	IC, 74LSl62
1	IC, 74LS174
4.	IC, 74LS244
1	IC, 74LS368
1	IC, 74LS373
1	IC, 74LS3 93
36	SOCKET 16 PIN 300 ML
6	SOCKET 20 PIN 300 ML
47	CAP . 1 UF 50 V
2	CAP 200 PF 50 V 20\%
2	RES 33 OHM l/4W 5\%
1	RES 200 OHM 1/4W 5\%
3	RES 1K OHM l/4W 5\% CC
1	IC, 33 OHN 16 PIN RES DIP
1	IC, 3.3K 6 PIN RES SIP
4	IC, 3.3K 10 PIN RES SIP
1	IC, 74LSl 22
1	IC, DDU-4-5250 DELAY LINE
1	8 POSITION DIP SWITCH
1	HEATSINK TMH 6106-13
1	6-32 $\times 3 / 8$ PPH SCREW
1	$7805-\mathrm{LM}$ 340T-5.0
2	PCE EJECTORS
1.	RES 20K OHM l/4W
1	DIODE IN914.1N4148
1	RES 150 OHM 1/4W 5\%
1	RES 3.3K OHM l/4W 5\%
3	65474 BERG PV JUMPER
2	BERG lx2 STR . 230 PIN TIN
3	CAP 10 MF 16 V TANT
1	COSMOS-48K PROM
32	4.164 RAM

PART/SUB
NUMBER DESIGNATION
7000028
7010160 Ul, U5, Ul0, U17
7010162 U7
7010168 U3
7010172 Ul2, U18, U22
7010174 U4
7010180 Ul9
7010195 U6, U21
7010232 Ul6
7010241 Ul 3
7010264 Ul4, U23-U25
7010303 Ull
7010304 U20
7010312 U9
7060003
7060005
$7030045 \mathrm{C} 2, \mathrm{C} 4, \mathrm{C} 6$,
C9-Cll, Cl3,
Cl7-C56
7030043 C3, Cl5
7020037 Rl, R4
7020056 Rlo
7020073 R2, R6, R8
7010346 Ul5
7010344 RP2
7010345 RPI, RP3-RP5
$7010213 \quad 458$
7010366 U2
7050002 S3
7130003
7130006
7160001
7130072
7020104 R7
7040001 CR2
7020053 R5
7020085 R3
7170004
7170018 E9-El0, E14-
E15
$7030009 \mathrm{Cl} 2, \mathrm{Cl}$ 4, Cl 6
7010479 U8
7010422 U26-U57

THIS PAGE INTENTIONALLY LEFT BLANK

